26 research outputs found

    An Adaptive Mechanism for Optimal Content Download in Wireless Networks

    Full text link
    This paper presents an adaptive mechanism for improving the content download in wireless environments. The solution is based on the use of the file delivery over unidirectional transport (FLUTE) protocol in multicast networks, which reduce considerably the bandwidth when there are many users interested in the same contents. Specifically, the system proposed reduces the average download time of clients within the coverage area, thus improving the Quality of Experience. To that extent, clients send periodically feedback messages to the server reporting the losses they are experiencing. With this information, the server decides which is the optimum application layer forward error correction (AL-FEC) code rate that minimizes the average download time, taking into account the channel bandwidth, and starts sending data with that code rate. The system proposed is evaluated in various scenarios, considering different distributions of losses in the coverage area. Results show that the adaptive solution proposed is very suitable in wireless networks with limited bandwidth.This work is supported in part by the Ministerio de Economia y Competitividad of the Government of Spain under project COMINN (IPT-2012-0883-430000). The associate editor coordinating the review of this manuscript and approving it for publication was Prof. Wenwu Zhu.De Fez Lava, I.; Guerri Cebollada, JC. (2014). An Adaptive Mechanism for Optimal Content Download in Wireless Networks. IEEE Transactions on Multimedia. 16(4):1140-1155. https://doi.org/10.1109/TMM.2014.2307155S1140115516

    Performance Evaluation of Scalable Video Streaming in Mobile Ad hoc Networks

    Full text link
    (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.The development of video streaming services on wireless ad hoc networks is a challenge task as a consequence of different limitations such as bandwidth-constrained, variable capacity links and energy-constrained operation. Moreover, the dynamic topology of nodes causes frequent link failures and high error rates. We propose in this paper a performance evaluation of the scalable video streaming over mobile ad hoc networks. In particular, we focus on the rate-adaptive strategy for streaming scalable video (H.264/SVC). In order to provide QoS mechanisms in the routing process, a new routing protocol is introduced. This protocol estimates the available bandwidth value, which is sent to video source in order to adapt the bit rate during the video transmission. We also propose a simulation framework that supports evaluation studies for scalable video streaming. In the simulation experiments, SVC streams with combined scalability (quality and temporal scalability) were used. As quality scalability method, we used Medium Grain Scalability (MGS). The results reveal that the rate-adaptive method helps avoid or reduce the congestion in MANETs obtaining a better quality in the received videos.Castellanos, W.; Guerri Cebollada, JC.; Arce Vila, P. (2016). Performance Evaluation of Scalable Video Streaming in Mobile Ad hoc Networks. IEEE Latin America Transactions. 14(1):122-129. http://hdl.handle.net/10251/83347S12212914

    Available Bandwidth Estimation for Adaptive Video Streaming in Mobile Ad Hoc

    Full text link
    [EN] We propose in this paper an algorithm for available bandwidth estimation in mobile ad hoc networks and its integration into a conventional routing protocol like AODV for improving the rate-adaptive video streaming. We have introduced in our approach a local estimation of the available bandwidth as well as a prediction of the consumed bandwidth. This information allows video application to adjust its transmission rate avoiding network congestion. We conducted a performance evaluation of our solution through simulation experiments using two network scenarios. In the simulation study, transmission of video streams encoded with the H.264/MPEG-4 advanced video coding standard was evaluated. The results reveal performance improvements in terms of packet loss, delay and PSNR.Castellanos, W.; Guerri Cebollada, JC.; Arce Vila, P. (2019). Available Bandwidth Estimation for Adaptive Video Streaming in Mobile Ad Hoc. International Journal of Wireless Information Networks. 26(3):218-229. https://doi.org/10.1007/s10776-019-00431-0S21822926

    Evaluation of background push content download services to mobile devices over DVB networks

    Full text link
    © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper proposes a multicast content download service based on the use of residual network capacity to push multimedia content to available local storage in personal multimedia devices. The service under study is based on the FLUTE protocol. Specifically, FLUTE packets fill the spare capacity in the IP tunnels reserved for the primary streaming service (opportunistic insertion). The paper also evaluates the use of AL-FEC parity to overcome transmission errors,object multiplexing to send the most popular multimedia contents more frequently and cache management policies that consider user preferences in order to keep in storage the most useful items. The service has been evaluated through simulations and measurements performed with an application prototype based on the DVB-H standards. The results show that AL-FEC enables the use of residual capacity for background content download services. In turn, AL-FEC, as well as object multiplexing, improves the relation between the number of content items and the overall access time. Moreover, results show that high percentages of requests can be served from the local cache of the service, provided that it is possible to estimate the popularity of content items and the user preferences.This work was supported by the PAID-05-12 program of the UniversitatPolitecnica de Valencia.Fraile Gil, F.; De Fez Lava, I.; Guerri Cebollada, JC. (2014). Evaluation of background push content download services to mobile devices over DVB networks. IEEE Transactions on Broadcasting. 60(1):1-15. https://doi.org/10.1109/TBC.2013.2289639S11560

    A QoS-aware routing protocol with adaptive feedback scheme for video streaming for mobile networks

    Full text link
    One of the major challenges for the transmission of time-sensitive data like video over mobile ad-hoc networks (MANETs) is the deployment of an end-to-end QoS support mechanism. Therefore, several approaches and enhancements have been proposed concerning the routing protocols. In this paper we propose a new QoS routing protocol based on AODV (named AQA-AODV), which creates routes according to application QoS requirements. We have introduced link and path available bandwidth estimation mechanisms and an adaptive scheme that can provide feedback to the source node about the current network state, to allow the application to appropriately adjust the transmission rate. In the same way, we propose a route recovery approach into the AQA-AODV protocol, which provides a mechanism to detect the link failures in a route and re-establish the connections taking into account the conditions of QoS that have been established during the previous route discovery phase. The simulation results reveal performance improvements in terms of packet delay, number of link failures and connection setup latency while we make more efficient use of the available bandwidth than other protocols like AODV and QAODV. In terms of video transmission, the obtained results prove that the combined use of AQA-AODV and the scalable video coding provides an efficient platform for supporting rate-adaptive video streaming.Castellanos Hernández, WE.; Guerri Cebollada, JC.; Arce Vila, P. (2016). A QoS-aware routing protocol with adaptive feedback scheme for video streaming for mobile networks. Computer Communications. 77:10-25. doi:10.1016/j.comcom.2015.08.012S10257

    Buffering Technique for Optimizing Energy Consumption in the Transmission of MultimediaTraffic in Ad-Hoc Networks

    Full text link
    Energy constraints on wireless nodes represent a current field of research. Such restrictions are particularly significant because of the great amount of features and applications currently available on devices, which contribute to dramatically increase energy consumption. However, when transmitting delay-sensitive data, such as multimedia streaming, a balance between energy optimization and quality of service is required. In this sense, there are many works that address this issue from different layers of network architecture separately; however, a more efficient solution could be achieved by combining the management capabilities of the different layers and the joint use of such information, which is called a crosslayer mechanism. Moreover, despite the fact that the IEEE 802.11 standard defines an energy management mechanism at MAC level, it is envisaged only for structured networks, leaving just general guidelines for other kind of networks, such as Ad- Hoc networks. Therefore, as a first step towards the design of a cross-layer scheme, this paper analyzes the flaws of IEEE 802.11 standard as regards the infrastructureless mode and proposes an optimization mechanism for energy management in Ad-Hoc networks. The proposed approach is based on a buffering mechanism, which is able to increase power-saving periods of time in Ad-Hoc nodes. Simulations using NS3 indicate that it is possible to obtain higher levels of residual energy at the end of a transmission using the proposed scheme.Gonzalez, S.; Arce Vila, P.; Guerri Cebollada, JC. (2015). Buffering Technique for Optimizing Energy Consumption in the Transmission of MultimediaTraffic in Ad-Hoc Networks. IEEE Latin America Transactions. 13(1):250-258. doi:10.1109/TLA.2015.7040655S25025813

    Evaluation of the MDC and FEC over the quality of service and quality of experience for video distribution in ad hoc networks

    Full text link
    Mobile ad hoc networks (MANETs) offer an excellent scenario for deploying communication applications because of the connectivity and versatility of this kind of networks. In contrast, the topology is usually extremely dynamic causing high rate of packet loss, so that ensuring a specific Quality of Service (QoS) for real-time video services becomes a hard challenge. In this paper, we evaluate the effect of using Multiple Description Coding (MDC) and Forward Error Correction (FEC) techniques for improving video quality in a multimedia content distribution system. A hybrid architecture using fixed and wireless ad hoc networks is proposed, which enables the use of multipoint-to-point transmission. MDC and FEC mechanisms can be combined with multipath transmission to increase the network efficiency and recover lost packets, improving the overall Quality of Experience (QoE) of the receiver. Simulations have been analyzed paying attention to objective parameters (Peak Signal to Noise Ratio, Packet Delivery Ratio, Decodable Frame Rate and interruptions) and subjective parameters. Results show that MDC increases the probability of packet delivery and FEC is able to recover lost frames and reduce video interruptions in moderate mobility scenarios, resulting in the improvement of video quality and the final user experience.This work was supported by project MIQUEL (TEC2007- 68119-C02-01/TCM) of the Spanish Ministry of Education and Science. The authors would like to thank the Editor and the reviewers for helpful suggestions to improve the quality of this paper.Acelas Delgado, P.; Arce Vila, P.; Guerri Cebollada, JC.; Castellanos Hernández, WE. (2014). Evaluation of the MDC and FEC over the quality of service and quality of experience for video distribution in ad hoc networks. Multimedia Tools and Applications. 68(3):969-989. https://doi.org/10.1007/s11042-012-1111-3969989683Apostolopoulos JG, Wong T, Tan W, Wee SJ (2002) On multiple description streaming with content delivery networks. IEEE INFOCOMBoukerche A (2009) Algorithms and protocols for wireless and mobile ad hoc networks. John Wiley & Sons IncChow CO, Ishii H (2007) Enhancing real-time video streaming over mobile ad hoc networks using multipoint-to-point communication. Comput Commun 30:1754–1764Clausen T, Jacquet P (2003) Optimized link state routing protocol (OLSR), RFC 3626Corrie B et al (2003) Towards quality of experience in advanced collaborative environments. Third Annual Workshop on Advanced Collaborative EnvironmentsGabrielyan E, Hersch R (2006) Reliable multi-path routing schemes for real-time streaming. International Conference on Digital Telecommunications, pp 65–65Gandikota VR, Tamma BR, Murthy CSR (2008) Adaptive-FEC based packet loss resilience scheme for supporting voice communication over adhoc wireless networks. IEEE Trans Mobile Comput 7:1184–1199Gharavi H (2008) Multi-channel for multihop communication links. International Conference on Telecommunications, pp 1–6Grega M, Janowski L, Leszczuk M, Romaniak P, Papir Z (2008) Quality of experience evaluation for multimedia services. Przegląd Telekomunikacyjny i Wiadomości Telekomunikacyjne 4:142–153Hsieh MY, Huang YM, Chian TC (2007) Transmission of layered video streaming via multi-path on ad hoc networks. Multimed Tool Appl 34:155–177ITU—International Telecommunication Union (2007) Definition of quality of experience (QoE)”, Reference: TD 109rev2 (PLEN/12)ITU-R Recommendation BT.500-12 (2009) Methodology for the subjective assessment of the quality of television pictures. International Telecommunication Union, GenevaITU-T Recommendation P.910 (2000) Subjective video quality assessment methods for multimedia applications. International Telecommunication Union, GenevaKao KL, Ke ChH, Shieh CH (2006) An advanced simulation tool-set for video transmission performance evaluation. IEEE Region 10 Conference, pp 1–40Ke CH et al (2006) A novel realistic simulation tool for video transmission over wireless network. Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trsutworthy ComputingKeisuke U, Cheeonn C, Hiroshi I (2008) A study on video performance of multipoint-to-point video streaming with multiple description coding over ad hoc networks. EEJ Trans Electron, Inf Syst 128:1431–1437Kilkki K (2008) Quality of experience in communications ecosystem. J Univers Comput Sci 14:615–624Li A (2007) RTP payload format for generic forward error correction. RFC 5109, Dec. 2007Li J, Blake C, Couto DD, Lee H, Morris R (2001) Capacity of ad hoc wireless networks. 7th Annual International Conference on Mobile Computing and Networking, pp 16–21Liao Y, Gibson JD (2011) Routing-aware multiple description video coding over mobile ad-hoc networks. IEEE Trans Multimed 13:132–142Lindeberg M, Kristiansen S, Plagemann T, Goebel V (2011) Challenges and techniques for video streaming over mobile ad hoc networks. Multimed Syst 17:51–82Mao S et al (2003) Video transport over ad hoc networks: multistream coding with multipath transport. IEEE J Sel Area Comm 21:1721–1737Ni P (2009) Towards Optimal Quality of Experience Via Scalable Video Coding. Mälardalen University Press Licentiate Theses, SwedenPinson MH, Wolf S (2004) A new standardized method for objectively measuring video quality. IEEE Trans Broadcast 50:312–322Rong B, Qian Y, Lu K, Hu RQ, Kadoch M (2010) Multipath routing over wireless mesh networks for multiple description video transmission. IEEE J Sel Area Comm 28:321–331Schierl T, Ganger K, Hellge C, Wiegand T, Stockhammer T (2006) SVC-based multisource streaming for robust video trans- mission in mobile ad hoc networks. IEEE Wireless Comm 13:96–103Schierl T, Stockhammer T, Wiegand T (2007) Mobile video transmission using scalable video coding. IEEE Trans Circ Syst Video Tech 17:1204–1217Schwarz H, Marpe D, Wiegand T (2007) Overview of the scalable video coding extension of the H.264/AVC standard. IEEE Trans Circ Syst Video Tech 17:1103–1120VQEG (2008) Video quality experts group. Available online: http://www.vqeg.orgWang Z et al (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13:600–612Wei W, Zakhor A (2004) Robust multipath source routing protocol (RMPSR) for video communication over wireless ad hoc net- works. Proceedings of IEEE International Conference on Multimedia and Expo 2:1379–1382Winkler S, Mohandas P (2008) The evolution of video quality measurement: from PSNR to hybrid metrics. IEEE Trans Broadcast 54:660–668Xunqi Y, Modestino JW, Bajic IV (2005) Performance analysis of the efficacy of packet-level FEC in improving video transport over networks. IEEE International Conference on Image Processing 2:177–180Zink M, Schmitt J, Steinmetz R (2005) Layer-encoded video in scalable adaptive streaming. IEEE Trans Multimed 7:75–8

    Analysis and evaluation of adaptive LDPC AL-FEC codes for content download services

    Full text link
    This paper proposes the use of adaptive low density parity check (LDPC) application layer-forward error correction (AL-FEC) codes for content download services over erasure channels. In adaptive LDPC codes, clients inform the content download server of the losses they are experiencing. Using this information, the server makes forward error correction (FEC) parity symbols available to the client at an optimum code rate. This paper presents an analytical model of the proposed adaptive LDPC codes. The model is validated through measurements realized with an application prototype. In addition, results show the performance of these codes in different scenarios, compared to the performance of nonadaptive AL-FEC, optimum LDPC AL-FEC codes, and an almost ideal rateless code. Adaptive LDPC AL-FEC codes achieve download times similar to almost ideal rateless codes with less coding complexity, at the expense of an interaction channel between server and clients.De Fez Lava, I.; Fraile Gil, F.; Belda Ortega, R.; Guerri Cebollada, JC. (2012). Analysis and evaluation of adaptive LDPC AL-FEC codes for content download services. IEEE Transactions on Multimedia. 60(3):641-650. doi:10.1109/TMM.2012.2190392S64165060

    IPTV-Oriented Network Architecture

    Full text link
    [EN] Although it emerged as a means to improve switching speed at the core network, MPLS has spread rapidly as a very !exible and robust solution for network providers to enable triple play services and reduce costs at the same time. As network complexity grows and a higher scalability is required to meet customer demands and give them the necessary Quality of Experience, more advanced features and functions must be included at the 'brains' of the network. To this end, a more automated and video delivery oriented path reservation mechanism based on RSVP-TE has been developed and tested in a lab environment with real-world ISP network equipment. We have added additional video intelligence capabilities to the network using Juniper routers and taking advantage of the JUNOS SDK for third-party developers. Finally, some measurements have been taken to validate our IPTV-oriented architecture, showing that it is possible to achieve a reasonably better bandwidth utilization by using the proposed video LSP reservation scheme.The work described in this paper was carried out with the support and network equipment of Juniper Network's Partner Solution Development Platform program.Murcia Olivares, V.; Delgado Calot, AP.; Arce Vila, P.; Guerri Cebollada, JC. (2011). IPTV-Oriented Network Architecture. Waves. 3(1):32-39. http://hdl.handle.net/10251/57651S32393

    Transmisión inalámbrica multimedia coordinada con DASH-SAND

    Full text link
    [EN] The adoption of DASH (Dynamic Adaptive Streaming over HTTP) as a video transmission standard has introduced new challenges in environments with high density of Wi-Fi clients. If video players do not take into account the playback status of other devices in the network unfair bandwidth distribution may cause playback problems (stalls, low playback quality, etc.). This paper proposes a collaborative playback technique based on DASH-SAND (MPEG¿s Server and Network Assisted DASH) that aims to reduce, in a collaborative way, the number of interruptions in the playback of multimedia content in Wi-Fi environments with high density of users. Results prove that the proposed solution reduces both the number and duration of stalls at the expense of decreasing the average representation of the playback.Este trabajo ha sido subvencionado por el Programa PAID10-18 así como por el Proyecto Línea de I+D+i Tecnologías de distribución y procesado de información multimedia y QoE de la Universitat Politècnica de València.Belda Ortega, R.; De Fez Lava, I.; Guerri Cebollada, JC. (2020). Transmisión inalámbrica multimedia coordinada con DASH-SAND. Universidad de Málaga. 1-4. http://hdl.handle.net/10251/178577S1
    corecore